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Abstract

The problem of structuring sequences of instructional stimuli
such that learning is optimized may be modelled as a sequential de-
cision problem with an imbedded mathematical model of learning provid-
ing a criterion function. Three types of optimization methods for
such a representation have been investigated for the specific case of
paired-associate learning using the single-oper..:tor linear model, the
one-element model, or the random-trial increments model. Globally
optimal exhaustive-search methods, such as Dynamic Programming, have
been found to be impractical for all but the simplest problems, due
to inherent dimensionality limitations. Algorithmic methods, whereby
the optimal decision at each step may be specified immediately with-
out recourse to extensive look-ahead search, appear to be sufficient
for the models investigated, primarily due to the absence of stimulus
interaction. An optimal algorithm is specified for a class of learn-
ing models which includes the linear, one-element, and RTI models as
special cases. Certain previously reported optimal algorithms are
shown to be special cases of this algorithm. Finally, a heuristic
search technique is outlined as a possible optimization method for
problems too large for exhaustive-search solution and too complex for
algorithmic solution.
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Chapter 1 Introduction

This investigation is concerned with the problem of structuring
sequences of instructional stimuli such that learning is optimized.
The particular type of learning considered is that of "paired-assoc-
iates", where one "trial" of a stimulus-response pair consists of
the presentation of the stimulus member of the pair, followed by the
subject's response, followed by presentation of the response member
for reinforcement. Learning a list of foreign language vocabulary
pairs in this manner can be thought of as an example of paired-
associate learning. The optimization of learning, in the sense
considered in this investigation, can take the form either of maxi-
mizing learning for a specified number of trials, or of minimizing
the number of trials necessary to achieve a specified level of learn-
ing. The quantitative evaluation of "level of learning" takes the
form, in most cases, of an expected value of a test score obtained
after learning has taken place.

The optimization problem, for the purposes of this investigation,
was considered abstractly as a sequential decision process with an
imberHed mathematical model of learning providing a criterion func-
tion. The problem investigated can be expressed as follows: "Given
a mathematical model of paired-associate learning and a set, S, of
stimulus-response pairs to be learned, which element of S should be
selected for presentation at each trial so that either learning is
maximized for a given number of trials, m, or the number of trials
necessary to achieve a given level of learning is minimized?" The
sequence of presentations, (s

1

, s
2

, s
m
), thus obtained will be

referred to as the optimal presentation strategy for the given se-
quential decision problem.

It should be emphasized at this point that the primary orienta-
tion of the research was toward the investigation of techniques of
solution, and particularly computer-oriented techniques, for the
abstract optimization problem just stated, as opposed to any invest-
igation of the psychological relevance of the processes.

A few general, but hopefully not very restrictive (in terms of
psychological relevancy) assumptions are made concerning the frame-
work of the sequential decision problem. First, it is assumed that
the presentation strategy can be either response-insensitive or re-
sponse-sensitive, depending on the model of learning used. Secondly,
it is assumed that the "state" of the model, in the form of a state
vector whose components consist of the probabilities of incorrect
response, appropriately quantized, for each of the elements of the
stimulus set, S, can be explicitly determined at each stage of the
sequential decision process. For response-sensitive strategies,
this determination will, of course, depend on the actual or simulated
response history or the subject. It is further assumed that the
effect on the state of the model of selecting a particular stimulus
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for presentation can be determined at each stage of the process, in

terms of either explicit or expected changes in probabilities of in-
correct response. It is assumed that in the case of response- sensi-
tive strategies, where expected values of change in state must be
used, that only two responses are possible, namely "correct" and
"incorrect".

Figures 1 and 2 illustrate, in terms of the framework just de-
scribed, the sequential decision processes applicable to learning
models which correspond to deterministic and non-deterministic state
transitions, respectively. Response-insensitive strategies may cor-
respond to deterministic or non-deterministic transitions, depending
on the learning model used, while response-sensitive strategies will
generally correspond to non-deterministic transitions. Although
certain of the learning models used imply further restrictions, such
aF non-interaction of stimuli, the general framework proposed for
the problem necessitates no further restrictions.

The sequential decision process for models imposing deterministic
state transitions Ls illustrated in Figure 1. It is assumed that :he

model is initially in some arbitrary state, Q
01

. State Q. is defined
as follows:

where

(1) (2) (n)
Qij <q

1.j

, q:
j tj

,

:

. , q. > (1)

q.. = probability of incorrect response to rth stimulus
ij

The n transitions emanating from this initial state (Node 01) indicate
that there are n po:isihle stimuli to choose from for the first trial
and, in general, n di' zrent possible state transitions, depending on
the choice. The transitions will be determined by the imbedded model
of learning. Although most of the particular learning models used
imp]; independence of stimuli (i.e., each component of the state vec-
tor is a function only of the presentation of the corresponding stim-
ulus), the decision process has been deliberately formulated to allow
dependence of each component on all presentations and, by implication,
on time (to include memory effec77. Stage 1 illustrates the n new
states which can result, corresponding to each of the n stimuli, if

chosen for presentation. In general, these states will be different,
although one or more of them could conceivably he identical with the
initial state. Stage 2 continues the process definition by illustrat-
ing all possible state transitions from each of the possible states
at Stage 1. A dotted transition is shown between Q

ln
and Q

21
. to il-

lustrate that, in general, any node in the graph below the initial
node need not have a unique predecessor. The number of states at
any stage will be less than or equal to the number of states in the
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Initial State

Stage 1

Stage 2

Stage m
Qmt

Figure 1 Sequential Decision Graph: Deterministic Transitions
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Initial State

Stage 1

Stage 2 6
2 2 i 2j 2

Stage m

Figure 2 Sequential Decision Graph: Non-deterministic Transitions
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state space, namely zn, where z is the number of quantization levels.
An optimal presentation strategy for the process illustrated in

Figure 1 is defined as any sequence of presentations, (P
1

,P
2'

...,P
m
),

where each P. is chosen from the set (si,s2,...,sn), which maximizes

an expected test score after m trials. The expected test score in
this case is defined as follows:

E {Tmj} = (100/n) E (1-q
(j )

) = 100 (100/n) E q
( )

k=1 k=1 mi

(2)

()
where the q

m
are the components of the jth state of stage m.

As illustrated in Figure 2, the sequential decision process is
essentially the same when the state transitions are non-deterministic,
except that more than one transition is possible as the result of the
presentation of a particular stimulus. The particular framework il-
lustrated, with two possible transitions for each presentation, is

applicable either to dichotomous response-sensitive models, such as
the one-element model with correct and incorrect responses, or to
two-valued stochastic- increment models, such as the random-trial
increments (RTI) model. The labelling of Figure 2 denotes correct
(C) and incorrect (I) responses corresponding to the presentation of
each possible stimulus. It is, of course, true that P{C}+P(1)=1.
The labelling could just as well correspond to "increment" (I) and
"no increment" (C) for the RTI model. The other diFference inherent
in the non-deterministic process illustrated by Figure 2 is that, in

the normal usage, optimization makes sense only in the context of an
expected value of &Cr

mj
!n other words, for the deterministic pro-

cess, given the same initial state and the same model of learning,
the same presentation strategy will always be optimal; for the non-
deterministic process, on the other hand, the best that can be done,
a priori, is to specify an algorithm which will guarantee, on the
average, the optimal value of E{T }.

mj

The remainder of this report will be concerned with the investi-
gation of different approaches to the problem of optimal instruction
sequencing formulated as one of the sequential decision processes of
the type illustrated by Figures 1 and 2. This formulation includes
as special cases several previous investigations reported by other
authors. These investigations will be commented upon at the appro-
priate point in the report. The Methods section of the report dis-
cusses the theoretical and experimental approaches taken to the
problem and generally follows the organization of the Results sec-
tion. Part A of the Results section (Chapter 111) is concerned with
exhaustive (globally optimal) optimization methods, such as Dynamic
Programming, and includes comments on previous investigations in-
volving this app.oach. Chapter :11-B discusses algorithmic methods,
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including the specification of an optimal algorithm applicable to
a class of learning models which includes the single-operator linear
model, the one-element model, and the RTI model as special cases.
Also included in this section are the results of a number of Monte
Carlo simulations designed to determine the efficacy of the optimal
algorithm relative to standard cyclical or random presentation strat-
egies. Chapter III-C outlines a possible heuristic approach to the
optimization problem for more complex learning models which cannot be
optimized algorithmically. A primary advantage of this heuristic
state-space search approach is that it provides a means of overcoming
the difficulties of dimensionality inherent in methods such as Dynamic
Programming for problems of even moderately realistic complexity. The
Conclusions section includes an evaluation of the optimization methods
proposed and suggestions for further research.
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Chapter II Methods

The startinc pc:0.z for the initial research plan was an investi-
gation of the applicability and limitations of Dynamic Programming
(Bellman, 1957, 1961; Bel?man & Dreyfus, 1962) in the solution of
the general optimization problem described in the Introduction.
Dynamic Programming approaches to problems of this type have been
taken or suggested by various researchers, including Smallwood (1962),
M,:theson (1964), Groen and Atkinson (1966), Smallwood (1971), and
Lalfee (1970). The approach taken in this investigation was to
attempt to determine general criteria of applicability of Dynamic
Programming to problems of the type described, and to outline practi-
cal limitations of this method. In addition, dimensionality reduc-
tion techniques and modified forms of Dynamic Programming, such as
State-increment Dynamic Programming (Larson, 1968), were investigated
for their potential in increasing the practical applicability of this
form of solution.

In the second phase of the research, algorithmic optimization
methods were investigated (i.e., methods by which the optimal strate-
gy can be specified outright, rather than reconstructed by means of
search techniques). Monte Carlo simulations of the instructional
process for several such algorithmic methods were conducted for the
purpose of determining the theoretical effectiveness of these methods.
Included in this work was a simulation of the experiment conducted by
Dear, et al. (1965), which was designed to test an optimal presenta-
tion strategy based on the one-element model of learning. The purpose
of the simulation was to answer some questions brought out by their
study and to attempt to obtain more substantive verification of their
conclusions. The method used was straightforward repetitive stochastic
simulation with sample sizes determined in part by tolerance criteria
on the variance of the sample means. The simulations were conducted
on a PDP-15/40 computer using an additive pseudo-random number gener-
ation scheme, and on an IBM 370/155 computer using the SSP power res-
idue method. Common runs of certain cases were made using both ma-
chines to detect bias in the results. As the simulation programs
used were fairly short and straightforward, representative examples
are included for reference in the Appendix, along with verification
data for the pseudo-random number generation schemes and programs
to determine confidence levels on the sample means.

The final phase of the research was concerned with the investi-
gation of optimization methods suitable for problems not apparently
amenable to algorithmic or Dynamic Programming solution. It is anti-
cipated that one source of such problems will be learning models
which allow for general stimulus interaction (and by implication,
memory of a sort). The approach taken was to investigate the appli-
cability of certain heuristic state-space search methods developed

7



in the field of Artificial Intelligence (cf. Nilsson, 1971; Dreyfus,
1969; Hart, et al., 1968; Pohl, 1969). Since presently there are
apparently no generally accepted learning modf'3 of the type neces-
sitating such an approach, an attempt was made to formulate the
heuristic methods in terms of a general class of learning models
which would contain certain anticipated interactive features. As

such, the heuristic methods proposed serve primarily an illustrative
purpose. The heuristic solution paradigm will need to be refined by
further research as more appropriately complex learning models are
developed.
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Chapter III Results

A. Globally Optimal Search Techniques

Several investigators have proposed the use of Dynamic Programming
in the solution of optimization problems similar to the problem out-
lined in the Introduction of this report. Dynamic Programming is the
pricipal globally optimal search technique discussed in this section,
but is by no means the only such technique. Smallwood (1962) is gen-

erally credited with making the first application of a Dynamic Pro-
gramming type of solution to an instructional sequencing problem, al-
though the problem examined is somewhat different and more specific
than the problem considered in this report. A later investigation by
Smallwood (1971) involved the application of Dynamic Programming to
the solution of an instruction sequencing problem which included cost
of instruction as an additional criterion. This problem falls more
within the framework of classical Dynamic Programming than does the
simple sequence optimization problem based solely on quantized learn-
ing as a criterion, and would seem to constitute a more valid appli-
cation of this technique. Applications of Dynamic Programming prin-
ciples in contexts similar to that of the present investigation are
described by Dear (1964), Matheson (1964), Karush & Dear (1966), and
Calfee (1970). The Dynamic Programming aspects of these investiga-
tions will not be discussed directly here, since the comments to fol-
low regarding another report will generally apply to these as well

The formulation which is perhaps most relevant to the present
discussion is that of Groen and Atkinson (1966). In addition, this
reference appears to be the most widely accepted and oft-cited general
application of Dynamic Programming principles to optimal instruction-
sequencing problems. The example chosen by the authors to illustrate,
solution by Dynamic Programming is that of a sequence of three presen-
tations from a set of two instructional stimuli, using the single-
operator linear model to specify state transitions. The "decision
tree" used by the authors to illustrate the decision process is shown
in Figure 3. The following comments regarding the application of
Dynamic Programming to problems in optimal instruction-sequencing
will stem largely from this example, but will not be restricted to
it, since in all important respects, the general structure of Figure
1 is embodied in this example.

The first observation is that .chile the tree structure of Figure
3 was apparently chosen to more lucidly illustrate the branching
characteristics of the decision process, it is, nevertheless, not the
customary framework for a Dynamic Programming formulation of the prob-
lem. A Dynamic Programming formulation is ordinarily given in terms
of a mapping of the state space of the process into itself at each

9
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succeeding stage. In the customary fC'-mulation, the mappings stem-
ming from the particular initial state shown would be illustrated
as in Figure 4. In a cursory sense, cf course, Figure 4 merely re-
sults from a consolidation of common states at each stage in Figure
3._ In terms of practical considerations imposed by computer imple-
Mentation, however, the implications are more far- reachiij. First
of all, forward Dynamic Programming, which could have advatages over
backward Dynamic Programming for applications of this type, is not

directly suited to the problem as implemented literally as shown in
Figure 3. The reason for this is that common states in the forward
direction have been separated and are treated in memory no differently
from states which are actually distinct. It would be necessary to
effect a search through the whole list of successors at each stage in
order to identify common states so that recursive optimization could
be performed, a task which grows exponentially in magnitude with the
number of stages. In the customary Dynamic Programming formulation,
the computational task at each stage is independent of the number of
stages, since the entire state space is represented systematically
in memory at each stage. The size of the state space depends, of
course, on the quantization accuracy of the components of the state
vector, as well as on the number of components, in contrast to the
size of the final stage of the tree representation, which depends
on the number of stages and the mtmber of components (it is assumed
that the number of components in the state vector is the same as the
number of instructional stimuli in the set, S). Note that the quanti-
zation accuracy, i.e., the accuracy with which the magnitudes of the
components of the state vector are represented, does not affect memory
requirements for the tree representation insofar as increased accuracy
does not require extended precision arithmetic in the computer.

For very small problems, the tree representation is less restrict-
ive in terms of computer memory requirements. In the example of Fig-
ure 3, the last two stages impose a fast-memory requirement of 12
"nodes" (the term "node" is used as the measure of memory requirement,
rather than a decomposition into a more detailed specification in terms
of the number of words or bytes required to contain the information re-
presented by each node, since this is less obfuscative and provides a
greF.ter degree of generality). A standard Dynamic Programming formu-
latisn, on the other hand, would impose a fast-memory requirement of
2x10 nodes, assuming a quantization interval of 0.01. These require-
.-nts are determined from the fact that, in general, sufficient fast
storage must be available to contain all information relating to any
two successive stages in order to implement a practically feasible
Dynamic Programming solution. Since the amount of storage required
is stage-dependent in the tree formulation, the limitation is obtained
from the storage required to contain the last two stages, since these
are the largest. Hence, the 12-node figure. The requirement is the
same for any two successive stages in the standard formulation, and is
numerically equal to twice the size of the state space, which in this

11



Stage 1 (.60,.90)

Stage 2 (.30,.90) (.60,.45)

Stage 3 (.15,.90) (.30,.45) (.60,.22)

Stage 4 (.08,.90) (.15,.45) (.30,.22) (.60,.11)

Figure 4 Sequential Decision Process
(Standard Formulation)
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case is (100)
2

or 10
4

.

Again, the requirement is independent of the number of stages for
the standard formulation. If the example process were continued to
21 stages (not seemingly unreasonable) the fat-memory requirement for
the standard formulation would remain at 2x10 , while the requirement
for the tree formulation wld increase to more than 1.5x10 . In ad-

dition, direct compd.-isJris such as this must be tempered with the fact
that the tree representation provides an optimal solution to a sequen-
tial decision problem beginning at one particular initial state, while
the standard formulation provides the solutions to a family of sequen-
tial decision problems beginning at any initial state in the state
space. If optimal sequences are to be obtained for a number of dif-
ferent initial states, these sequences would, in effect, be obtained
with a single recursive optimization pass through the stages using
the standard Dynamic Programming formulation, while a separate com-
plete optimization would be required for each initial state using
the tree formulation.

The important point regarding fast-memory and computation-time
limitations is that for any implementation involving straightforward
Dynamic Programming techniques, the size of the problem which may be
treated is severely limited. For example, for a state vector with
only five components (five paired-associate items to be learned) and
a quantization interval of 0.01, the fast-memory requirement would he
2x101° nodes. Bearing in mind that the minimum conceivable asse,:iated
byte requirement would be 4x1010, and that even the largest 'resent-
day computers have fast-memory sizes on the order of only 10° or 107
bytes, this requirement is clearly prohibitive. For the tree formu-
lation, five components would impose a fast-memory requirement of
approximately 2x10 10 nodes after only 16 stages. Table 1 is a compi-
lation of fast-memory requirements in terms of number of nodes for
the standard formulation over a range of state vector size and quan-
tization interval size, while Table 2 shows the fast-memory require-
ments for the tree formulation over a range of state vector size and
number of stages. The barriers imposed by fast-memory limits of pre-
sent-day computers are illustrated by dashed lines in the tables. A
straightforward Dynamic Programming solution would thus be implementa-
ble only for values of the parameters corresponding to points in the
upper portion of each table.

Modified Dynamic Programming techniques, such as the State-incre-
ment Dynamic Programming of Larson (1968) can, in some cases, effect
reductions of fast-memory requirements by two or three orders of mag-
nitude. It would seem, however, that even with this great a reduction,
the requirements for most cases of practical interest would still be
prohibitive in general.

Dynamic Programming solutions, including those described above, as
ordinarily implemented, are, in effect, breadth-first state-space search
techniques, which impose a fundamental limitation in terms of memory re-
quirements, as has been seen. It is possible, for the instruction

13



n

n

Table 1 Fast-memory Requirements (in nodes)
for Standard Formulation

Quantization Interval

0.1 0.05 0.01

2

3

4

5

6

7

8

9

10

10
2

4x102

10
3

8x103

104 1.6x1o5

105 3.2x106

106 6.4x107

10
7

1.3x109

10
8

2.7x10
10

1o9 5.1x10
11

l

lo
o

1.0x10
13

10
4

10
6

10
8

1010

10
12

10
14

10
16

16
18

10
20

Table 2 - Fast-memory Requirements (in nodes)
for Tree Formulation

m

5 10 15 20

2

4

6

8

10

12

14

16

18

20

48 1.5x103 4.9x104 1.6x10
6

11.2x10
3

1.3x106 1.3x109 1.4x1012
119.0x103

7.0x10 7
5.5x10 4.3x1015

3.7x104 1.2x10 9
3.9x1013 1.3x1018

1.1x10 5
1.1x10

10
1.1x10

15
1.1x10

20

2.7x10 5
6.7x1010 1.7x10

16
4.2x10

21

5.7x105 3.1x10
11

1.7x10
17

9.0x10
22

8.1x10 5
1.2x10

12
1.2x10

18
1.3x10

24

2.0x10
6

3.8x1012 7.1x10
18

1.3x10
25

3.4x10
6 26

1.1x10
13

3.4x1019 1.1x10
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sequence optimization problem under consideration, to use a form of
depth-first search to partially alleviate this space restriction. Thc
tree formulation is more convenient for visualization of this methbd,
although it is not requisite. To illustrate depth-first search, sup-
pose that in the example of Figure 3, available fast memory was re-
stricted to 3 nodes. This would prohibit application of standard
Dynamic Programming, which would require 12-node storage. Instead

of "searching" through the entire last stage, as would be done in the
fir.,t step of a conventional Dynamic Programming formulation, the search
could be conducted one node at a time from Stage 3. For example, the
first node at the left of Stage 3 (.15,.90) could be stored, along with
its successors, (.08,.90) and (.15,.45). On the basis of this infor-
mation, it could be concluded that the optimal decision from node
(.15,.90) would be s,. The next step would be to attempt to "back up"
to the parent node of (.15,.90) at Stage 2, which would be (.30,.90),
and determine the optimal decision at that node. This cannot be done,
however, until the optimal decision at node (.30,.45) (second from left)
at Stage 3 is known, so this is determined next. This process is con-
tinued until the optimal decision at the initial node can be determined.
For each successive step in the optimization, only three nodes at a time
need be considered. In general, it is not necessary that the nodes con-
tained in the portion of the tree being optimized be restricted to two
successive stages. The only limitation is the size of the subtree which
can be contained in memory at any given time. Even though this method
may alleviate storage requirement restrictions in some cases, computa-
tion time restrictions do not permit any significant practical extension
of the size of the problem which may be solved by globally optimal tech-
niques of this type. In the previously cited example involving a state
vector with 5 components, a subtree of 10 stages would be the largest
that could realistically be optimized at one tim9.

506-10)
This

,1.
s means that the

total optimization for 16 stages would involve 5x10' sep-
arate steps. If each step required one minute of computation time (a
very conservatively low estimate), the entire optimization would take
250 hours, and each succeeding stage would multiply this figure by a
factor of 5.

The final observation with regard to the application of Dynamic
Programming to the solution of optimal instruction-sequencing problems
is that in most cases, at least for the paired-associate framework, it

would appear to be unnecessary. The reason for this is that path costs,
which are ordinarily independent of thekstates of the process in the
sense that they need not be a function of the states joined, are in
fact a direct function of the states joined for processes of the type
illustrated in Figure 1, of which the process of Figure 3 is a special
case. The result is that with the process of Figure 3, for example,12
once the state with the minimum value of q

(4 )
+q

(4 )
is located, the prob-

lem is effectively solved, since reconstruction of any path from any
such state back to the initial state constitutes optimization. Recur-
sive optimization is unnecessary. For general processes of the type
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illustrated in Figure 1, all that is necessary to effect optimization

n (r)
is to search the final stage for the state, Q ., for which q*. is

mj mj
r=1

minimum and reconstruct any path of m segments back to the initial
state. This path constitutes an optimal presentation strategy. It may
be noted that since the models considered do not allow for stimulus in-
teraction, the order of presentation.is immaterial. All that is re-
quired to contruct an optimal presentation strategy is a count of the
number of times each element of the stimulus set is to be presented.
It may be observed, for example, that the three optimal presentation
strategies (s

1s2s2
s2s1s2 , and s

2
s
2
s

1

) derived by Groen and Atkinson

for the problem of Figure 3 are merely all possible distinguishable
permutations of the set (s1,s

2
,s

2
). It is not even necessary that the

fast-memory capacity be sufficient to contain the entire last stage.
The s..t.lch may be broken into as many segments as necessary, since the
only information which must be transferred between segments is a single

value of E q
(r)

corresponding to the current optimal state and a state
r=1 mi

identifier. In theory, then, this simplification in optimization pro-
cedure entirely eliminates the fast-memory constraint inherent in a
Dynamic Programming formulation. Unfortunately, the computation-time
constraint prevents any significant extension of the size of the prob-
lem which may be treated. !n the previous 5-component example, for
instance, the state space size was 2x1010. This means that the final
stage must be divided into at least 2x104 segments, allowing for a
fast-memory capacity of 106 nodes. If each segment could be searched
in 10 seconds (a conservatively low estimate) the entire search would
take approximately 55 hours, and each addec.' component would increase
this figure by two orders of magnitude.

The conclusion which apparently must be reached is that the practi-
cal applicability of globally optimal search techniques to the problem
at hand, even for the simplest cases, is inherently and rather severely
limited by dimensionality constraints.

16



B. Algorithmic Optimization Methods

Algorithmic methods of optimization for several special cases of
the general optimal instuction-sequencing problem described in the
Introduction have been proposed by various researchers. The term
"algorithmic" is used here to indicate methods by which the optimal
decision at each stage in succession may be determined directly from
the present state of the process together with the learning model and
possibly a response history. In other words, an algorithmic method
is caken here to mean one by which each element of an optimal sequence
may be determined directly as the sequence proceeds, as opposed to
methods like Dynamic Programming, where the entire recursive optimi-
zation must be performed before the sequence can be determined.

The primary purpose of this section of the report will be to de-
scribe an optimization algorithm which applies to a broad class of
learning models which includes as special cases the single-operator
linear model (Bush & Sternberg, 1959), the one-element model (Bower,

1961; Estes, 1960) and the random-trial increments (RTI) model (Nor-
man, 1964). The linear and RTI models are described in Figures 5-1
and 5-2, respectively, while the one-element model is described in
Figure 6. The reason for discussing the algorithm in terms of these
particular models is that they appear from the literature to be the
most widely accepted and analyzed models of paired-associate learn-
ing. In addition to a description of the algorithm and its applica-
tion to paired-associate learning processes based on these three mod-
els, some Monte Carlo simulation results will be discussed which com-
pare the effectiveness of the optimal presentation strategy, as spec-
ified by the algorithm, with standard cyclical or random strategies.

Prior to the statement of the algorithm, a few definitions are in
order. First, let the learning process to be optimized be represented
by either Figure 1 (deterministic) or Figure 2 (non-deterministic),
where the states Q.., and the function to be maximized, E{T..}, are

j j

as defined by equations (1) and (2), respectively, in the Introduction.
Next, let the gain function, AQijk , be defined as the increase in E {T}

produced by a transition from the jth state of Stage i to the kth
state of Stage Thus,

n (r) (r)

,k/
J

kg-. cli+1Qik
r=1

j
(3)

If stimulus actions are treated as being independent by the learning
model used in optimization, as is the case with the linear, one-element,
andRTImodels,thenAQiikis a function only of the component of the

state vector corresponding to the stimulus presented. Thus, if stim
ulus r is presented at Stage i, then AQ. is simply the difference

ijk
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q.

qi+1 = aqi (0 < a < , where

q. probability of incorrect
response on ith stimulus

NNN'''''----------

a learning rate parameter

Trial Number, i

Figure 5-1 Single Operator Linear Model

q

Yi

qi+1 aR qi

Y. 0, with probability 1-c

, where

1, with probability c

Trial Number, i

Figure 5-2 Random-trial Increments Model
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where,

1-y

q

C C

C 1 0

[ e 1 -6

Trial Number, i

C conditioned state

C - unconditioned state

E correct response

E - incorrect response

y "guessing" probability

E

E

E

- probability of transition from C to C

Figure 6 One-element Model
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between the value of the rth component before presentation of the
corresponding stimulus and the value after prc7entation:

(6 (0
AQijk qij 4i+1,k (4)

The class of learning models for which the optimization algorithm
to be specified applies is defi.,ed as follows:

1) The model must be applicable to paired-associate learn-
ing as specified by the structure and associated descrip-
tions of Figures 1 and 2.

2) Stimulus interaction must be negligible, i.e., AQ.
di(

must
be as specified by Equation (4)

3) AQijk must be a non negative monotonic non-decreasing

function of i.

Conditions 2) and 3) imply that AQ for each individual component must
be non-negative monotonic non-decreasing, i.e., the learning model
itself must have this property.

At each stage, i, of a process described by Figure 1 or Figure 2,
the process will be in a given state, Q... Presentation of a given

stimulus, sr, will cause a transition to a new state, Qi+1k, at Stage

i+1. If the imbedded learning model satisfies the three conditions
specified above, then an algorithm which specifies an optimal pre-
sentation strategy for the process is as follows:

A: Choose for presentation at each stage. i, that stimulus
whichproducesthelargestvalueofw(for determin-

uk
istic models) or the largest value of E{AQ. k (for non
deterministic models).

This algorithm is, in effect, a more general version of the Largest
Immediate Gain (LIG) algorithm of Calfee (1970) (A was arrived at
independent of the work of Calfee. This fact would tend to support
the validity of both algorithms).

The reasoning behind the claim of optimality for algorithm A is
as follows: since there is legligible stimulus interaction, the values
of AQ produced by each stimulus, sr, at any given point in the process,
can be treated individually for that stimulus. Since these values of
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AQ are also non-negative and monotonic non-decreasing with i, the
value of AQ produced by a current presentation of sr will be at
least as great as that produced by any subsequent presentation of
s
r

. In other words, only current values of AQ for all s need be
considered at each stage of the process, since each of these values
will be at least as large as subsequent values for the same stimulus.
In more picturesque terms, the values of AQ for the process may be
viewed as blocks whose size is proportional to the magnitude of the
corresponding AQ, with the blocks arranged in n stacks, correspond-
ing to the n different stimuli. Presentation of a given stimulus
corresponds to removing a block from the top of the corresponding
stack. An optimal presentation strategy for m presentations (trials)
corresponds to removing the m largest blocks from the tops of the
stacks. Note that this analogy makes very clear the fact that the
order in which the m largest blocks are removed is immaterial, subject
only to the restriction that only the top block of any given stack
may be removed at each step. The optimality of the procedure of re-
moving at each step the block which is currently largest among the
top blocks is apparent from the observation that this block is the
largest anywhere in any stack, since each top block is as large or
larger than any other block in its stack.

The block analogy applies directly only to deterministic models
in the sense that the block sizes are fixed. The reasoning is essen-
tially the same for non-deterministic models except that expected
values of AQ must be used (these may or may not depend on Bayesian
corrections, depending on whether or not the model is response-
sensitive. Deterministic models are inherently response-insensitive).
Choosing at each step the stimulus for which E {0 Q} is greatest pro-
duces, on the average, the largest value of E {T }.

Note that algorithm A does not require that the same model para-
meters, or even the same model, be used for all items in the paired-
associate list. In terms of the block analogy, the algorithm obvi-
ously holds, regardless of the relative sizes of the stacks, as long
as the blocks in each stack are arranged in decreasing order of size.
Algorithm A is thus more general than certain other algorithms which
have been proposed to apply only to cases where the same model with
the same parameters is applied to each paired-associate item.

As mentioned previously, algorithm A will be applied to the lin-
ear, one-element, and RTI models of paired-associate learning. Con-
ditions 1) and 2) of this section are obviously satisfied by each of
these three models. In order to show that A holds for each model,
therefore, it is necessary only to show further that Condition 3)
is satisfied.

Calfee (1970) and Atkinson and Paulson (1972) have correctly ob-
served that the optimal presentation strategy for the special case
of the linear model with the same value of a a9dthe same initial
values of probability of incorrect response (Or') for all items is

01

the same as the standard cyclical strategy commonly employed in
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paired-associate experiments. Since the order of arrangement of
stimuli in the stimulus sequence is immaterial, this strategy is
equivalen',. to presentation of each stimulus k

1

times, where k
1

is

the largest integer less than or equal to mmn, followed by presen-
tation of any k

2
different stimuli, where

k
2
= m kin.

Algorithm A, however, is more general than this algorithm in that
the value of a and the initial value of q associated with each stim-
ulus are arbitrary (within the unit interval). For equal values of
a and q, of course, A produces the standard cyclical strategy, in
effect.

The fact that Condition 3) is satisfied for the linear model
can be seen from tl-e fact that qi satisfies Condition 3), since

and 0<a<1. Hence,

qi+1
=

1

na.
'1

6Q qi qi+1

qi aqi

= q. (1-a)

also satisfies Condition 3) since q. satisfies Condition 3) and
0<(1-a)'.1. Therefore, A holds for the linear model.

In order to determine the effectiveness of A under conditions
other than uniform parameters, Monte Carlo simulations were conduct-
ed for two different cases. In the first case, all initial values
of q were set equal to the complement of the guessing probabilities,
but the values of a for the individual items were chosen randomly
according to a truncated Gaussian distribution. Mean values were
chosen at 0.4, 0.6, 0.7, 0.8, 0.85, 0.90, 0.95 and 0.97 to permit
coordination with Calfee's results (1970). The standard deviation
was specified to be the difference between the mean value and the
closest boundary of the unit interval, and the distribution was
truncated at this boundary and at the symmetric point on the other
side of the mean value. The optimal strategy specified by A for
this case will not, in general, be the same as the standard cycli-
cal strategy, so a simulation was conducted to compare the effective-
ness of the two (details of the simulation are contained in the Ap-
peneix), using a simulated paired-associate list of 10 items.

The results of the simulation are shown in Figures 7-1 through
7-8. As can be seen from these figures, the maxim..m advantage
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provided by A under any conditions is on the order of 5%. The
curves shown represent average values for a sample size of 200.
In other words, the simulated process was run 200 times, each time
with a different set of a values chosen as described above (Note:
the fact that a value of 200 trials was chosen as the terminating
value for the simulation is coincidental; the number of trials and
the sample size are not necessarily related).

The second case involving the linear model was a comparison of
the strategy specified by A for uniform parameters (the cyclical
strategy) versus a uniform random strategy. Note that these two
strategies are asymptotically equivalent for large values of m
(in a sense, all strategies are equivalent for large m, since
E {T} asymptotically approaches 100% for any strategy when the
learning model satisfies the three conditions for A), but for
finite values of m, the random strategy, on the average, will pro-
duce a lower value of E {T }. The results of this stimulation are
shown in Figures 7-9 through 7-16. Again, the maximum advantage
produced by A is on the order of 5%. Note that, for most values
of a, the values of E {T} for the two strategies appear to converge
faster than do the corresponding values for the two strategies in
the first case. This is apparently due to the fact that the effects
of values of a distributed about some mean value are not, in general,
symmetric. It might be noted that Figures 7-1 through 7-16 apply,
as well, to the RTI model used in response-insensitive mode under
the same conditions, with the only difference being that the ordi-
nates represent average values of E {T }, since this model is nor-
deterministic. An equivalence between the parameters of the two
models results from the fact that, for the RTI model in response-
insensitive mode:

Elqi+11 = qi(1-c) + arqic

= q.(1-c+a
r
c)

1

Hence, the same values of &{iwi} are obtained for the RTI model

with parameters a
r

and c, as values of q
i+1

are obtained ..'or the

linear model with

a = 1 c + a
r
c.

Karush and Dear (1966) obtained an optimal presentation strate-
gy for the special case of the one-element model with uniform values
,f 8 and y for all items, as well as equal initial values of q. The
strategy is to choose at each stage that item for which the current
probability of being in the learned state is least. This algorithm
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was later abstracted (cf. Atkinson, 1968; Calfee, 1970; Atkinson and
Paulson, 1972) to a form based on counts of responses, where the item
chosen for presentation is the one with the fewest consecutive cor-
rect responses since the last incorrect response. This algorithm is
a special case of algorithm A, since choosing the item for which AQ
is largest under conditions of uniform parameters is equivalent to
choosing the item with the fewest consecutive correct responses.
This can be shown as follows. Karush and Dear (1966) have shown
that A., the probability of being conditioned to a given item at the

outset of trial i, is a monotonic non-decreasing function of i, given
correct responses at each trial. Following any incorrect response,
X is reset to e, the probability of transition to the conditioned
state, given that the model was in the unconditioned state prior to
reinforcement. _Following the notation of Karush and Dear (E for cor-
rect response, E for incorrect response, C denoting the conditioned
state, C denoting the unconditioned state, and p` =1 -p for any proba-
bility, p), then

and

Hence,

and

E{
i
+1} = P{E}P{ciillE} + P{T}P{ciillf}

= (x.+yxes){(x.+yext)/(x.+yx0} + y*A*0

= A. + A:e

E{io'+1 } = 1 Ate

= 20;0*

AQ qi qi+1

yt(At - At )

+1

E{AQ} = Y*(At E {7,-i
+1 })

1

= y*(xt - A:0*)

= y*Ate

4o

(5)



which is monotonic non-increasing, since A. is monotonic non-

decreasing. Therefore, choosing at each step the item for which
E {AQ} is largest is equivalent to choosing the item, under condi-
tions of uniform model parameters, for which the number of consecu-
tive correct responses is least. Equation (5) also shows that the
one-element model satisfies Condition 3) for A, guaranteeing that A
holds for this model with arbitrary parameters.

Monte Carlo simulations were conducted for the one-element model
for three cases. In all three cases, separate simulations were run
for values of e (or 6 -mean) equal to 0.025, 0.05, 0.1, and 0.3, again,
to allow for coordination with Calfee's data (1970). In the first two
cases, the strategy specified by A was compared with the standard cyc-
lical strategy for fixed uniform values of e, and for randomly deter
r;ined values of e (by the method specified for the linear model), re-
spectively. The results of these simulations are shown in Figures
8-1, 8-3, 8-5, and 8-7 for the uniform values, and in Figures 8-2,
8-4, 8-6, and 8-8 for the random values. The curves show, first of
all, that greater advantages are predicted for the optimal strategy
by the one-element model than by the linear model. Secondly, the
simulations show that greater gains can be expected, on the average,
for the one-element model with non-uniform parameters than for the
one-element model with uniform parameters.

The third case involving the one-element model was a comparison
of the optimal strategy given by A with a uniform random strategy.
Again, the results show greater predicted gains using the one-element
model than using the linear model. This is not surprising, certainly,
since it would be expected that an optimal response-sensitive strategy
should be able to use the additional information supplied by the re-
sponses to advantage.

Dear, et al. (1967), have reported an experiment designed to test
the performance of an optimal presentation strategy for the one-element
model with uniform parameters (Karush & Dear, 1966). The strategy to
be tested was the special case of A just discussed. The experiment
was designed to compare this strategy with the standard cyclical strat-
egy for effectiveness. The primary result of the experiment was that
no statistically significant difference between the two strategies was
detectable in terms of post-test scores. As there was no evidence
that a full simulation of the instructional process had been conducted
to determine theoretically predicted differences between the two strat-
egies, and since such a simulation involved only minor modifications
to the programs used in the one-element simulations represented by
Figures 8-1 through 8-12, it was decided to include this simulation
in this investigation. The program used to conduct the simulation is
listed in the Appendix, and serves to illustrate the techniques used
in the one-element simulations as well.

Figure 9-1 illustrates the expected sum-of-correct-responses
scores versus number of trials for the two-choice response experiment,
using the value of e assumed By Dear, et al., while Figure 10-1
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illustrates the corresponding perfect-performance scores. Figures
9-3 and 10-3 illustrate the corresponding information for the four-
choice response experiment. Figures 9-1 and 9-3 illustrate the fact
that, for both experiments, higher scoYes are predicted for both
strategies than were actually observed, in addition to the fact that
larger differences between the strategies were predicted than were
observed, although the predicted differences are not as great as
might have been expected. It may also be noted that the number of
trials chosen by Dear, et al. (320) appears to be past the point of
predicted maximum difference between the two strategies. This means
that a greater difference might have been observed in the experiment
if a smaller number of trials (between 200 and 240) had been chosen,
although it is unlikely this would have been the case, since the
maximum difference in either case is not a great deal larger than
the difference at 320 trials. Figures 10-1 and 10-3, illustrating
the mean perfect-performance scores for the two experiments, also
shows that a different choice for the number of trials probably
would not have produced a significantly different result, in terms
of the difference between the two strategies.

Figures 9-2, 9-4, 10-2, and 10-4 show the results of the same
simulations as were run for 9-1, 9-3, 10-1, and 10-3, respectively,
except for the values of 0 (0.05 for the two-choice response experi-
ment and 0.044 for the four-choice response experiment). These values
were chosen so that the expected sum-of-correct-responses scores for
the standard strategy would be approximately the same as those ob-
tained experimentally. The reason for doing this was to observe the
corresponding predicted results for the optimal strategy for these
values of 0. Figures 9-2, 9-4, 10-2, and 10-4 show that the predicted
differences for the two strategies are the same or greater than those
corresponding to a 0 of 0.1. It will be noted, however, that the max-
imum predicted differences occur in this case for values of m greater
than 320. The basic conclusion drawn by Dear, et al., that the one-
element model is shown to be inadequate for accurately representing
the learning process involved, nevertheless appears to be justified
on the basis of the simulation data.

The final learning model to be discussed in the context of opti-
mal instruction-sequencing is the Random-trial Increments (RTI) model
(Matheson, 1964). It is well known that, in a mathematical sense, the
linear and one-element models are merely special cases of the RTI mod-
el corresponding to certain choices of parameters (c=1.0 and aR=0.0,

respectively). As has already been mentioned, when the RTI model is

used in response-insensitive mode, the values of E{T} produced by a
given strategy, on the average, correspond to those produced by the
same strategy using a linear model with

a = aR + 1 c

54
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It appears that the RTI model might also be used in a response-
sensitive mode by employing some statistical means of differentiating
expected values of q following a correct response from those follow-
ing an incorrect respinse, such as the Bayesian estimator used by
Karush & Dear (1966). In order to obtain such an estimator for the
RTI model, one might first consider the distribution of q values for
sequential trials. Following Atkinson, et al. (1965, pp. 123-128),
the joint probability of incorrect responses on trials i and 1+1 is:

P{T.&f.
1+1

} = Ecaq =v} + \)(1-c)q2 .P{S.
1-1

=v}2
,iv 1-1 vo

where

= (aRc + 1 c)V2,i

V . =
v 1r

.P{S.
-1

=v} = (aRc + 1 c)i-lqr

is the r-th moment of the distribution of q values on trial i. Now,

where

P{-ffi+11E1}=P{Ei&Ei+1}/P{-E-i}

= (aRc+1-c)V
2

./V
1

.

,1

= (aRc+1-c)goEi-1

E = (4c-1-1-0/(aRc+1-0.
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Correspondingly, the joint probability of a correct response on trial
i and an incorrect response on trial 1+1 is:

PfEiai4.11 = caqv,i(1-qv,1)P{Si_1 =v} + p-c)qv,i(1-qv,i)P{Si_1 =v}

(aRc+1 -c)(V1,1 -V2,1)

= a(V1,i-V2,i)

Hence,

P{11.
+1

1E
i

= a(V
1,1

.-V
2,1

)/(1-V
1,1

.)

= {v1,i/(;-v1,i)}(a-p{fi+11Ei}) (8)

Using Equations (7) and (8) as the basis for providing updated esti-
mates of q values, given the previous response, a simulation was con-
ducted to compare the results of applying algorithm A for three dif-
ferent sets of RTI parameters. All values were chosen so that a, as
given by Equation (6), corresponded to one of the eight values used
in the previous simulations involving the linear model. Each set of
a
R
and c values consisted of three pairs, two of which corresponded

to the special cases of the linear and one-element models (c=1. and
a
R
=0.

'

respectively), with the chird pair corresponding to an inter-

mediate RTI model. The results of the simulation are shown in Figures
11-1 through 1I-8, corresponding to the eight different a values.
As would be expected, the E {T} values obtained for the linear cases
(lower curves) were almost identical ( subject only to minor statis-
tical. variation) to the values previously obtained for the actual
linear model simulation. That the RTI model with c=1. and the linear
model are equivalent in this sense can be seen from the fact that both

P {ti +11E.} and P{T.
1+1

1E.} reduce to a q
o 1

(q.
+1

for the linear model)

meaning tnat the model is response-insensitive. The performance of A
is seen to improve for values of aR and c giving the same equivalent

value of a, but corresponding to RTI models lying in between the

Ob.
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extremes of the linear and the one-element models (middle curves).
The best performance is obtained for equivalent values of aR and c

corresponding to the one-element model (upper curves). The results
seem to indicate that the RTI model, using the estimators of EquAcions
(7) and (8), becomes more response-sensitive", in a sense, as the
parameter values range from those corresponding to the linear model,
on the response-insensitive extreme, to those corresponding to the
one-element model on the response-insensitive extreme. Since each
pair of aR and c values for a given Figure (11-1 through 11-8) yields

the same a value, the lower curve represents the results of applying
the standard response-insensitive cyclical strategy for any of the
three models.
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C. Heuristic Search Techniques

It appears that optimal instruction-sequencing problems employing
present models of learning may be fairly easily handled by the methods
of Section III-B. Since exhaustive-search techniques such as Dynamic
Prc ramming appear to be impractical, due to dimensionality constraints,
the question arises as to approaches to the problem for models which
cannot be handled algorithmically. In this regard, certain of the
heuristic techniques developed in the field of Artificial Intelligence
would appear to be applicable to the optimal instruction-sequencing
problem. These techniques were developed specifically to provide an
approach to search problems much too large to be handled by conven-
tional search techniques. The particular heuristic method to be dis-
cussed with regard to possible application to the optimal instruction-
sequencing problem is basically the Ordered-search Algorithm of Nils-
son(1971, p.59). The search process will be described in the context
of a state-space graph similar to that of Figure 4 of Section ill-A.
The process involves the concept of searching for a "goal node" in
the graph, which in the present context could be taken either as any
node at a depth m (m trials removed from the initial state, or "start
node"), or as any node corresponding to a level of learning or condi-
tioning or above a certain criterion. if the search is conducted
subject to the latter specification of "goal node", then "incremental
path length" (the "cost", in a sense, of the path connecting two nodes)
would be defined as 1, and the search for a minimum-length path to a
goal node would correspond with the determination of the shortest se-
quence of stimuli necessary to achieve a specified level of learning.
If a goal node is defined as any node at a depth corresponding to a
specified number of trials, m, then incremental path length would be
defined as some form of complement (such as n-AQ) of the incremental
amount of learning which takes place between two nodes, and the search
for a minimum-length path to a goal node in this case would correspond
with the determination of the sequence of m stimuli which produces the
highest level of learning. In either of these cases, the heuristic
ordered-search algorithm illustrated in Figure 12 can be applied to
determine a minimum-length path to a goal node.

The algorithm is self-explanatory excel' for a few comments re-
..

garding the heuristic function, f. This function is a heuristically
determined estimate of the length of a minimum-length path from the
start node to a goal node constrained to pass through the node to

which the f value to be calculated applies. The value of f at any
node, n, is determined from

f(n) = g(n) h(n) (9)
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1) Put the start node s on a list
called OPEN and compute f(s)

2) If OPEN is empty, exit with
failure; otherwise continue

3) Remove from OPEN that node whose
f value is smallest and put it
on a list called CLOSED. Call

this node n. (Resolve ties for
minimal f values arbitrarily,
but always in favor of any goal
node)

4) I n is a goal node, exit with
the solution path obtained by
tracing back through the
pointers; otherwise continue

5) Expand node n, generating all of
its successors. (If there are no
successors, go immediately to 2)
For each successor n., compute
Nn.)

6) Associate with the successors
not already on either OPEN or
CLOSED the f values just com-
puted. Put these nodes on
OPEN and direct pointers from
them back to n

7) Associate with those succes-
sors that were already on
OPEN or CLOSED the smaller of
the f values just computed
and their previous f values.
Put on OPEN those successors
whose f values were thus low-
ered, and redirect to n the
pointers from all nodes whose
f values were lowered

8) Go to 2

START

Put s on OPEN
Compute f(s)

OPEN
empty

Yes
Failure

Remove from OPEN the
node (n) with smallest f
value and put on CLOSED

s n a
goal node

Yes
Success

Expand n, including
f values

Put successors not pre-
viously generated on OPEN

4.

Associate smaller f value
with previously generated
successors with appropriate
pointers. Put on OPEN
thosf successors on CLOSED
whose f values were lowered

Figure 12 Ordered-search Algorithm
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where g(n) is an estimate of the length of a minimum-length path

from the start node to node n, and h(n) is an estimate of the length
of a minimum-length path from node n to a goal node. More formally,
if k(n.,n

j
) is the length of a minimum-length path between any two

arbitrary nodes, n. and n (it is possible, in general, for more than

one path to exist between two nodes. There may also be no path be-
tween two nodes, in which case k is undefined), and if T is a set of
goal nodes, then

h(n.) = min k(n.,n.)

n.eT
j

J

is the actual length of a minimum-length path between any node, n.,

and a goal node. The function h(ni) is an estimate of this length:

Similarly,

g(n.) = k(s,n.)

is the actual length of a minimum-length path between the start node,

s, and any node,
,

n.
1

accessible from s. The function g(n.) is an

estimate of this length. More will be said presently about the prac-

tical determination of g and h.
The expansion of nodes referred to in the algorithm of Figure 12

merely amounts to determining all possible successors to a node one
step away from that node. In the context of the state-space formula-
tion for the optimal instruction-sequencing problem, this amounts to
determining all possible state vectors which can result in one step
from the present state vector as a function of which stimuli are
given. In order to avoid the problem of inordinately large state
spaces encountered in Dynamic Programming applications, the generated
successor nodes are stored in the form of a list, as indicated in the
algorithm, rather than requiring storage of the entire state space.
This means, of course, that the entire lisz must be searched for pre-
viously generated successors, as would be done in the tree formula-
tion for a Dynamic Programming solution, but the portion of the entire
graph which is seareled when effective heuristics are employed is
extremely small, so that computation time is not nearly as great a
limitation as in a Dynamic Programming Formulation.

In the progression of the algorithm, the fact that a value of f
is to be determined for a given node means that at least one path
has been determined between that node and the start node, Thus,
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g(n) can be set equal to the length of the minumum-length path thus

far determined between the start node and node n, with the guarantee

that g(n)?_g(n). It can be shown (cf. Nilsson, 1971, pp.59-65) that if

and if

h(n) < h(n) (10)

h(m) h(n) < k(m,n)

for any two nodes, m and n, and if there exists a minimum-length path
between the start node and a goal node, the algorithm specified in
Figure 12 will find this path. The second inequality is not actually
necessary to guaratee that an optimal path will be found, but does
guarantee that once the algorithm expands a node, an optimal path to
that node has been found. This inequality is called the consistency
assumption (the assumption that the inequality is satisfied) and is
usually satisfied if the heuristic information used in determining h
is applied consistently at all nodes.

The effectiveness of the search algorithm, in terms of computational
power expended to find a goal node (a solution), depend:- :ritically on

the heuristic function, h. In effect, the requirement ' it (10) be
satisfied guaratees that the solution is globally optimal. Selection

of heuristics which give the largest value of h subject to 10 yields

the solution with a minimum of computational effort (setting h=0 cor-
responds to a comflete absence of heuristic information and results
in inefficient blind search). Relaxing the inequality constraint on

h may yield a solution requiring even less computational effort, but
forfeits the guarantee of global optimality. Nevertheless, such a
solution could be useful.

As an example of the calculation of h for an optim-A instruction-
sequencing problem, consider the application of the ordered-search
algorithm to a problem with the structure of Figure 1, using a model
of learning which includes general stimulus interaction subject only
to the restriction that application of any given stimulus is non-
reinforcing to all but the corresponding component zf the state vector.
In other words, the effect of application of the r-th stimulus on any
but the r-th q value would be to either increase it or leave it un-
changed. Consider also that the search for a minimum-length path is
taken in the, context of a search for the shortest sequence of stimuli
which will produce a given level of learning. Under these conditions,

a possible heuristic for the determination of h would be to estimate
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the length of the minimum-length path without taking stimulus inter-
action into account. Due to the restriction on the interaction,

h would certainly then constitute a lower bound on h, thus guaran-
teeing an optimal solution. If the properties of the learning model
under these conditions were even further constrained, such as if q.

were a monotonic function, or were known to vary at less than some

given rate, then the determination of h could be quite straightfor-
ward. The description in general terms of the calculation of a heur-
istic function is quite difficult, at best, since its determination
is intrinsically related to the detailed structure of the particular
problem to be solved. At the same time, the determination of power-
ful heuristics is the crucial point in the effectiveness of heuristic
search techniques. It must be left to further research into specific
instruction-sequencing problems to determine how effective the heur-
istic paradigm may be in the solution of these problems.
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Chapter IV Conclusions

Of the three optimization techniques (exhaustive search, algo-
rithmic, and heuristic search) investigated for the problem structure
outlined in the Introduction, algorithmic methods seem the best suited
for use with presently accepted models of paired-associate learning
(specifically, the single-operator linear model, the one-element model,
and the random-trial increments model). Dynamic Programming as a solu-
tion technique for problems involving these models is not only unneces-
sarily complex, but is fundamentally and severely limited in its appli-
cability due to constraints of dimensionality, primarily in terms of
computer fast-storage size requirements. Modified exhaustive tech-
niques, such as State increment Dynamic Programming, depth-first search,
and last-stage search, may be used to alleviate memory-size constraints,
but computation-time constraints still severely limit the size of prob-
lem which can be treated. Algorithmic methods of optimization, i.e.,
methods by which the optimal decision at each step may be specified
immediately without the need for look-ahead search, appear to be suf-
ficient for the optimization problem involving models with no stimulus
interaction or time dependence. The optimal algorithm specified in
Section III-B of the report, algorithm A, has been shown to be quite
general in that the class of models to which it applies includes the
linear, one-element, and RTI models as special cases. In addition,
it is seen that the standard cycl.cal strategy, which is optimal for
the linear model with uniform parameters, the optimal strategy of
Karush & Dear (1966) for the one-element model with uniform parameters,
and the Largest Immediate Gain strategy of Calfee (1970) Ere all special
cases of algorithm A. An interesting by-product of the algorithm is the
way in which it makes clear the fact that, for models without stimulus
interaction, the actual order of presentation of stimuli is immaterial,
i.e., a specification of the number of times each stimulus is to be
presented is sufficient to construct an optimal sequence, and all such
sequences are equivalent.

Monte Carlo simulations were conducted to determine expected test
scores versus number of trials using the strategy specified by algorithm
A in comparison with the standard cyclical strategy and a uniform random
strategy for the three models used over a range of parameter values.
For the linear model with uniform parameters, of course, the cyclical
strategy is the optimal strategy, and a random variation in parameters
was therefore introduced to separate the strategies. While the optimal
strategy in this case did provide an advantage over the cyclical strat-
egy, the advantage was fairly small, the maximum advantage being on the
order of 5-10% in expected test score for a given number of trials.
Corresponding advantages for th one-element model were much larger,
the maximum advantage being on ,e order of 20-25% in test score, with
advantages for intermediate respsdnse-sensitive RTI models lying inbe-
tween. The conclusion to be drawn seems to be that optimal instruction
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sequencing strategies can be used to best advintage by response-sensi-
tive models which make the most effective use of the additional statis-
tical information contained in the response history of a subject. This

seems only logical, but perhaps the most important point brought out by
the simulations is the magnitude of the difference involved. To take a
specific example, the uniform-parameter one-element model in response-
insensitive mode is statistically equivalent to a uniform-parameter
linear model with a=1-e. The cyclical strategy applied to this one-
element model is therefore the optimal response-insensitive strategy,
and the simulations show that the optimal response-sensitive strategy
applied to the same model can provide a maximum advantage of 20-25% in
test score for a given number of trials, or 30-40% in the number of
trials necessary to achieve a given score. These results would tend
to indicate that the pursuit of optimal instruction-sequencing methods,
including the models involved, which make effective use of the response
history of a subject could be very worthwhile. in contrast with this
view, the results of the experiment of Dear, et al. (1967), using the
one-element model, would seem to indicate that response-sensitive opti-
mization strategies are fairly ineffective in practice. , all like-
lihood, however, this is due primarily to the inadequacy of the one-
element model, per se, to represent the learning process involved.
The simulations of this experiment included in this investig;Ition tend
to support this conclusion. It remains to be seen whether or not more
accurate models will result in effective optimal strategies in practice.

It is reasonable to expect that more complete models of the paired-
associate learning process will be sufficiently complex to preclude
the use of algorithmic methods such as algorithm A. A heu'- istic- search

technique which has the capability of overcoming the dimensionality lim-
itations of exhaustive-search techniques has been presented as a possi-
ble alternative approach to the optimization problem in such cases.
Although its specification must necessarily be fairly general at pre-
sent, particularly with regard to the heuristics involved, it is never-
theless quite likely that this approach could prove viable through
future research when appropriate learning models are deloped.
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Chapter V Recommendations

First of all, it is probable that further research into the appli-
cation of exhaustive-search techniques, such as Dynamic Programming,
to the optimal instruction-sequencing problem will prove relatively
fruitless -in practice, primarily due to severe inherent limitations
of dimensionality. Algorithmic methods appear adequate for present
learning models, but the models themselves appear to be inadequate
from the standpoint of accurate representation of the learning pro-
cess. Nevertheless, further research into algorithmic methods, such
as algorithm A presented in Section III-B of this repot-, may be worth-
while, particularly from the standpoint of extending their applicability
to broader classes of learning models. As more complete learning models
are developed, it is likely that their complexity, particularly with re-
gard to interrelationships,among the factors in the learning process,
will be sufficiently great to preclude a simple algorithmic approach
to optimization. Heuristic methods similar to that presented in this
report may then be the only viable approach to the problem, at least
of the three approaches considered in this investigation. Further
research into such heuristic methods, therefore, is definitely recom-
mended.

Ultimately, of coul.:e, one of the most important practical appli-
cations of optimal instruction-sequencing could be automatic interactive
optimization by computer in a CAI environment. Algorithmic optimization
methods are normally very easily implemented in such a situation, which
provides another good reason to pursue the investigation of such methods
to the limits of their applicability. Even for more complex optimiza-
tion tasks, heuristic methods give promise of being able to provide
effective instruction-sequencing in interactive real-time CAI situa-
tions. S 'ch methods should be pursued further in this regard, as well.
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Appendix Simulation Details

niffmslom n(2,10),A(10),sc1(i0),sc2(10)
REAL AC(7)/.6,.7,.8,.85,.9,.95,.97/
IX=7654321
PO 3 K1=1,7
A=AC(K1)

WRITE(3,20)AM,SD
S1 =('.

S2 =(1 .

DO 5 J= 1,200
DO 1 11=1,10
DO 1 12=1,2

1 n(12,1)=0.9
DO 6 K2=1,10

8 AR=0.
DO .q 1=1,12
CALL RAMPH(1X,IY,YFL)
IX =1Y

9 AB=AR+YFL
V.(AR-6. 0)*SD4AM
IWV.GT.1.).(R.(V.LT.(2.*AM-1.)))G0 TO 8

6 A(K2) =V
IC=0
DO 4 K=1,200
IC=1C+1
IF(1C.GT.10)10=1
IND=IC
Q(1,1Nn)=0(1,1mn)*A(Imo)
9vAx=41(2,1)-(1(2,1)*A(1)
IMAX=1
DO 7 1=2,10
DQ=0(2,1)-Q(2,1)*A(1)
1F(DQ.LE.PMAX)GD TO 7
DMAX=DD
IMAX =I

7 CONTINUE
D(2,IMAX)=Q(2,1MAX)*A(1MAX)
IN =K /20

IF(IN*20.NE.K)(10 TO 4

Figure A-1 Simulation of Optimization for Linear
Model with Normally Distributed a-vaNes
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DO 5 L=1,10
SC1(IN)=SC1(IN) +f,(1,L)
SC2(IN)=SC2(IN)+0(2,L)

4 CONTINUE
5 CONTINUE

DO 2 1=1,10
T1=100.-qC1(I)/20.
T2=i00.-sr2(1)/20.

2, WRITE(3,21)A,T1,T2
3 CONTINUE

20 FORMAT(//5X,3HAM=,E4.2,5X,3HSD=,F7.5/)
21 FoRMAT(5X,I3,2(5X,r5.1))

STOP
END

Figure A-1 (continued)
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nimpisLom n1(3(1),n2(10),u(10),sm0),F(in)
IX=51731
REAL APT(7)/.311,.143,,2,.25,.333,.5,.625/
PEAL. CT(7)/.45,.35,.25,.2,.15,.1,.08/
DO JO K1=1,7
AP=APT(K1)
C=CT(K1)
A= AR *C +1. -C

G=(AR*AR*C+1.-C)/A
V12=0.9*A
WRITF(3,21)AP,C,A
nn 2 1 =1,10

2 sc(1)=D.0
nn 12 J=1,loon
DO 1. 1=1,10
GF(I)=V12
F(I)=V12
Q1(I)=0.9

3 (12(1)=0.1
DO h K=1,200
OMAX=Q2(1)
I MAX =1

Do 6 1=2,10
ir(n2(1).1E.nml\x)on In 6
nmAx=o2(1)
IMAX=I

6 CONTINUE
rAL1 RANDU(IX,IY,YFL)
IX=IY
IF(YEL.GT.O1(IMAX))G0 TO 8
02(IMAX)=GF(IMAX)
GO To 9

8 (12(IMAX)=(A-GF(IMAX))*(F(IMAX)/(1.-F(IMAX)))
9 GF(IMAX)=GF(IMAX)*G

F(IMAX)=F(IMAX)*4
CALL RANDU(IX,IY,YFL)
IX=IY
IF(YFL.GT.C)GO Tn 13
IF(OMMAX).GT.1E-20)(11(IMAX)=01(IMAX)*AR

13 IND=K/20
IF(IND*20.NE.K)GO TO 4
DO 5 K2=1,10

5 SC(IND)=SC(1ND)+Q1(K2)

Figure A-2 Simulation of Optimization for RTI Model
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4 CONTINUE
12 CONTINUE
11 DO 10 1=1,10

M=20*I
TS=100.-SC(I)/100.

in 14PITE(3,20)M,TS
20 'CiRMAT(5X,13,5X,F5.1)
21 P1MAT(//5X,3HAP=,F5.3,3X,2HC=,F5.3,3X,2HA=,F5.3/)

Figure A-2 (continued)



DIMENSION 0(17,2),INn(2),Sc1(10),SC2(10)
niENSInN P1S(10),P2S(10),P(17,2)
IX=7654321
REAL. G(4)/.5,.25,.5,.25/
REAL. T(4)/.1,.1,.n5044/
nn 2 K1=1,4
GA=G(K1)
TH=T(K1)
RITE(3,21)GA,TH
IND(1)=0
IQS=17
NSAv=17
SAVQ=1.0
DO 12 1=1,10
P1S(I)=0.
P2S(I)=0.
Sc1(I)=0.

12 SC2(I)=0.
nn 5 J=1,1000
DO 1 11=1,16
DO 1 12=1,2
P(I1,12)=0.

1 Q(11,12)=0.
DO 4 K=1,400
IND(1)=IND(1)+1

r-. IF(IND(1).GT.16)IND(1)=1
10 nmiN=0(1),,,2)

10=1
nn 6 N =2, 16

1F(n(N,2).GF.QMIN)Gn Tn 6
7fis,11N=Q(N,2)

10=N
6 CnNTINUE

IF(10.NE.10S)G0 TO 9
SAVQ=PMIN
NSAV=IQ
Q(IQ,2)=1.01
GO Tn in

9 Q(NSAV,2)=SAVII
1QS=1(1
NSAV=17
SAVq=1.0
IND(?)=1(1
CALL RANDP(IX,IY,YFL)
1X=IY

Figure A-3 Simulation of Experiment of Dear, et al. (1967)
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IF(YFL.LT.TH)P(IND(1),1)=1.
ID=IND(2)
IF(P(10,2).E(1.1.)GO Tn 8
CALL RANDU(1X,IY,YFL)
IX=IY
IF(YFL.LT.GA)G0 TO 8
n(ID,2)=TH
GO TO 7

8 OT=Q(ID,2)
X=GA*(1.-QT)
R(ID,2)=(0T+X*TH)/(QT+X)

7 CALL QANi1U(IX,IY,YFL)
lx=1Y
IF(YFL.LT.TH)P(ID,2)=1.
1M=K/40
IF(IN*40.NE.K)G0 TO 4
P1=1.
P2=1.
DO 11 L=1,16
P1=P1*(GA+P(L,1)*(1.-GA))
P2=F2*(GA+P(L,2)*(1.-GA))
SC1(1N)=SC1(IM)+(1.-P(L,1))*(1.-GA)

11 SC2(1N)=SO2(IN)+(1.-P(1,2))*(1.-GA)
P1S(IN)=P1S(IN)+P1
P2S(IN)=P2S(IN)+P2

4 CONTINUE
5 CONTINUE

DO 2 1=1,10
M=40*I
TS1=16.-SC1(I)/1000.
TS2=16.-SC2(I)/1000.
PS1=P1S(1)/1000.
PS2=P2S(I)/1000.

2 WRITE(3,20)M,TSLTS2,FS1,PS2
20 FORMAT(5X,13,4(cX,F8.5))
21 FORMAT(//5X,6H(AMMA=,F4.3,2X,6HTHETA=,F4.:)/)

STOP
END

Figure A-3 (continued)
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SUM1=0.
Sflm2=0.

DO R 4=1,K3
S1=0.
S2=0,
DO 1 1-1,10
01(1)=1.

1 02(r)=1.
Oo 4 K=1,M
CALL RANDU(IX,IY,YPL)
IX=IY
IND=YFL*10.+1
CALL RANDU(IX,IY,YFL)
IX=IY
IF(YFL.LT.C)O1(INO)=Q1(IND)*ALPH
omAX=O2(1)
IMAX=1
DO 6 1=2,10
IF(O2(1).LE.QMAX)G0 To 6
QMAX=Q2(I)
IMAX=I

6 CONTINUE
CALL RANDU(IX,IY,YPL)
iX=IY

4 IF(YFL.LT.C)(12(IMAX)=o2(IMAX)*ALPH
Po 5 L=1,10
S1=S1+(11(L)

5 S2=S2+O2()
SUm1=SUM1+S1
SUM2=SUM2+S2
S(J,1)=100.-S1*10.
S(J,2)=100.-S2*10.

8 CONTINUE
SM1=100.-S11M1/K4
SM2=100.-S11M2/K4
X1=0.
X2=0.
no 9 I=1,K3
X1=X1+(SM-S(1,1))**2

9 X2=X2+(SM-S(I,2))**2
S G1=SORT(X1/(PK3*(FK3-1)))
S1,2=SooT(X2/(FK3*(PK3-1)))
PS1=SIG1*100/SM1
PS2=SIG2*100/S112
WRITE(3,25)SIG1,SIG2
WPI TE(3, 26 )PS1, PS2

Figure A-4 Routine for Determining Confidence Levels
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Table A-1 Frequency Distribution for Pseudo-random
Number Generator (RANDU IBM 370/155)

100,000 Samples

0.0 0.01 980 0.50 - 0.51 1034
9.01 - 0.92 1030 0.51 - 0.52 984
0.02 - 0.03 10/ ?5 0.52 0.53 998
0.03 - 0.04 994 0.53 0.54 974
0.04 - 0.05 974 0.54 - 0.55 990
0.05 - 0.06 1053 0.55 - 0.56 981
0.06 - 0.07 986 0.56 - 0.57 1006
0.07 0.08 977 0.57 - 0.58 1036
0.08 - 0.09 1021 0.58 0.59 1003
0.09 - 0.10 980 0.59 - 0.60 1004
0.10 0.11 1031 0.60 - 0.61 980
0.11 - 0.12 1028 0.61 - 0.62 1018
0.12 - 0.13 1047 0.62 - 0.63 976
0.13 0.14 993 0.63 - 0.64 1n40
0.14 - 0.15 1019 0.64 - 0.65 1036
0.15 - 0.16 1019 0.65 - 0.66 1009
0.16 - 0.17 930 0.66 0.67 1004
0.17 - 0.18 1041 0.67 0.68 957
0.18 - 0.19 958 0.68 - 0.69 1008
0.19 - 0.20 974 0.69 - 0.70 1002
0.20 - 0.21 973 0.70 - 0.71 1021
0.21 - 0.22 1037 0.71 - 0.72 977
0.22 - 0.23 1008 0.72 - 0.73 963
0.23 - 0.24 1015 0.73 - 0.74 994
0.24 - 0.25 949 0.74 - 0.75 926
0.25 0.26 1029 0.75 - 0.76 1027
0.26 - 0.27 956 0.76 - 0.77 986
0.27 - 0.28 1006 0.77 - 0.78 985
0.2R - 0.29 1007 0,78 0.79 979
0.29 - 0.30 980 0.79 - 0.80 1029
0.30 - 0.31 1904 0.80 - 0.81 1043
0.31 0.32 1029 0.81 - 0.82 974
0.32 - 0.33 9R5 0.82 - 0.83 1016
0.33 0.34 1014 0.83 - 0.84 1011
0.34 - 0.35 1046 0.84 0.85 1074
0.35 - 0.36 1011 0.85 0.86 990
0.36 - 0.37 923 0.86 - 0.87 997
0.37 - 0.38 1045 0.87 - 0.88 1029
0.38 - 0.39 962 0.88 - 0.89 974
0.39 - 0.40 1019 0.89 - 0.90 969
0.40 - 0.41 1014 0.90 - 0.91 969
0.41 - 0.42 1024 0.91 - 0.92 942
0.42 - 0.43 999 0.92 - 0.93 1015
0.43 - 0.44 981 0.93 - 0.94 1013
0.44 - 0.45 945 0.94 - 0.95 991
0.45 - 0.46 976 0.95 - 0.96 975
0.46 - 0.47 924 0.96 - 0.97 986
0.47 - 0.48 997 0.97 - 0.98 987
0.48 - 0.49 1067 0.98 - 0.99 993
0.49 - 0.50 1041 0.99 1.00 1019
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